Identifying Biologically Active Compound Classes Using Phenotypic Screening Data and Sampling Statistics

نویسندگان

  • Justin Klekota
  • Erik Brauner
  • Stuart L. Schreiber
چکیده

Scoring the activity of compounds in phenotypic high-throughput assays presents a unique challenge because of the limited resolution and inherent measurement error of these assays. Techniques that leverage the structural similarity of compounds within an assay can be used to improve the hit-recovery rate from screening data. A technique is presented that uses clustering and sampling statistics to predict likely compound activity by scoring entire structural classes. A set of phenotypic assays performed against a commercially available compound library was used as a test set. Using the class-scoring technique, the resultant activity prediction scores were more reproducible than individual assay measurements, and class scoring recovered known active compounds more efficiently than individual assay measurements because class scoring had fewer false positives. Known biologically active compounds were recovered 87% of the time using class scores, suggesting a low false-negative rate that compared well to individual assay measurements. In addition, many weak and potentially novel classes of active compounds, overlooked by individual assay measurements, were suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Classification of Small-Molecule Mechanism of Action Using a Minimalist High-Content Microscopy Screen and Multidimensional Phenotypic Trajectory Analysis

Phenotypic screening through high-content automated microscopy is a powerful tool for evaluating the mechanism of action of candidate therapeutics. Despite more than a decade of development, however, high content assays have yielded mixed results, identifying robust phenotypes in only a small subset of compound classes. This has led to a combinatorial explosion of assay techniques, analyzing ce...

متن کامل

Diversity-oriented synthesis as a tool for identifying new modulators of mitosis.

The synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurall...

متن کامل

Poisson Statistics of Combinatorial Library Sampling Predict False Discovery Rates of Screening

Microfluidic droplet-based screening of DNA-encoded one-bead-one-compound combinatorial libraries is a miniaturized, potentially widely distributable approach to small molecule discovery. In these screens, a microfluidic circuit distributes library beads into droplets of activity assay reagent, photochemically cleaves the compound from the bead, then incubates and sorts the droplets based on as...

متن کامل

PubChem3D: Biologically relevant 3-D similarity

BACKGROUND The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data se...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 45 6  شماره 

صفحات  -

تاریخ انتشار 2005